Invariant Differential Operators and an Homomorphism of Harish-Chandra

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Differential Operators and an Homomorphism of Harisb - Chandra

Let 9 be a reductive complex Lie algebra, with adjoint group G, Cartan subalgebra ~ and Weyl group W. Then G acts naturally on the algebra of polynomial functions &'(g) and hence on the ring of differential operators with polynomial coefficients, .97(g). Similarly, W acts on ~ and hence on .97(~). In [BC2], Harish-Chandra defined an algebra homomorphism J : .97(g)G -t .97(~)w. Recently, Wallach...

متن کامل

Invariant Differential Operators and an Homomorphism of Harisb-chandra

Let 9 be a reductive complex Lie algebra, with adjoint group G, Cartan subalgebra ~ and Weyl group W. Then G acts naturally on the algebra of polynomial functions &'(g) and hence on the ring of differential operators with polynomial coefficients, .97(g). Similarly, W acts on ~ and hence on .97(~). In [BC2], Harish-Chandra defined an algebra homomorphism J : .97(g)G -t .97(~)w. Recently, Wallach...

متن کامل

A Capelli Harish-chandra Homomorphism

For a real reductive dual pair the Capelli identities define a homomorphism C from the center of the universal enveloping algebra of the larger group to the center of the universal enveloping algebra of the smaller group. In terms of the Harish-Chandra isomorphism, this map involves a ρ-shift. We view a dual pair as a Lie supergroup and offer a construction of the homomorphism C based solely on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 1995

ISSN: 0894-0347

DOI: 10.2307/2152821