Invariant Differential Operators and an Homomorphism of Harish-Chandra
نویسندگان
چکیده
منابع مشابه
Invariant Differential Operators and an Homomorphism of Harisb - Chandra
Let 9 be a reductive complex Lie algebra, with adjoint group G, Cartan subalgebra ~ and Weyl group W. Then G acts naturally on the algebra of polynomial functions &'(g) and hence on the ring of differential operators with polynomial coefficients, .97(g). Similarly, W acts on ~ and hence on .97(~). In [BC2], Harish-Chandra defined an algebra homomorphism J : .97(g)G -t .97(~)w. Recently, Wallach...
متن کاملInvariant Differential Operators and an Homomorphism of Harisb-chandra
Let 9 be a reductive complex Lie algebra, with adjoint group G, Cartan subalgebra ~ and Weyl group W. Then G acts naturally on the algebra of polynomial functions &'(g) and hence on the ring of differential operators with polynomial coefficients, .97(g). Similarly, W acts on ~ and hence on .97(~). In [BC2], Harish-Chandra defined an algebra homomorphism J : .97(g)G -t .97(~)w. Recently, Wallach...
متن کاملA Capelli Harish-chandra Homomorphism
For a real reductive dual pair the Capelli identities define a homomorphism C from the center of the universal enveloping algebra of the larger group to the center of the universal enveloping algebra of the smaller group. In terms of the Harish-Chandra isomorphism, this map involves a ρ-shift. We view a dual pair as a Lie supergroup and offer a construction of the homomorphism C based solely on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Mathematical Society
سال: 1995
ISSN: 0894-0347
DOI: 10.2307/2152821